المختبر االثالث: المبادئ العامة لعزل الـ DNA

المبادئ العامة لعزل الـ DNA

يشكل الحامض النووي الدنا نسبة صغيرة من مكونات الخلية وعادة ما يوجد في أماكن محددة ومعروفة من الخلية في المخلية بدائية النواة Prokaryotic cell يوجد الدنا بشكل مكثف ومتمركز في مكان يدعى المنطقة النووية Prokaryotic cell يوجد الدنا في والتي لا تنفصل عن بقية مكونات الخلية بغشاء خلوي. أما في الخلية حقيقة النواة النواة والتي تتفصل عن بقية أجزاء الخلية الأخرى بغشاء خلوي، حوالي 90% من الدنا يوجد في النواة ضمن الكروموسوم ويسمى الدنا النووي Nuclear DNA أما البقية فيوجد في المايتوكوندريا ويسمى الدنا المايتوكونديري في المايتوكوندريا ويسمى الدنا المايتوكونديري الكروموسوم ويسمى الدنا المايتوكونديري ويسمى الدنا المايتوكونديري ويسمى الدنا المايتوكونديري الكناة الكلية للفايروس.

تعد عملية استخلاص الدنا من العمليات الضرورية للحصول على نموذج الدنا وأياً كان مصدر الاستخلاص (بكتريا، خلايا نباتية، خلايا حيوانية) فان عملية الاستخلاص تتضمن ازالة الشوائب للحصول على الدنا نقياً. إن عملية استخلاص الدنا من الكائنات الحية مهمة جداً وتمثل الخطوة الأولى والأساسية للعديد من التجارب والفحوصات المختبرية الوراثية الأخرى يمكن أن تعرف عملية الاستخلاص بشكل عام بأنها عملية الحصول على مادة محددة مع المجموع الكلي للمواد الأخرى بواسطة التأثير الفيزيائي أو الكيميائي. أن استخلاص الدنا في حالات كبيرة تمثل المطلب الأساسي للعديد من العمليات الجزيئية الأخرى.

الأهداف الرئيسية لاستخلاص الدنا هي:

- 1. فصل الدنا من كل مكونات الخلية الأخرى ضمن خطوات متسلسلة، ويجب أن يكون هذا الدنا نقياً قدر الامكان من الملوثات مثل البروتينات أو السكريات أو الكربوهيدرات أو RNA والخ. يمكن فصل الدنا عن المكونات الأخرى لأن وزنه الجزيئي عالى مقارنة بالجزيئات الأخرى.
 - 2. الحصول على تركيز وكمية كافية من الدنا لإجراء التجارب الأخرى المطلوبة.
 - 3. تحضير دنا ذو نقاوة عالية.

تعد مبادئ عزل واستخلاص الدنا من الكائنات الحية واحدة لجميع الطرائق لذلك فأن جميع الطرائق تتضمن الخطوات الأربعة التالية:

1. تحضير المستخلص الخلوي، محلول تكسير الخلايا (Preparation of cell extract (Cells breakage). لتكسير الجدران والأغشية الخلوية لتسهيل خروج الدنا وبقية مكونات الخلوية الأخرى ودون التعرض لأي أضرار أخرى، هناك العديد من الطرق المستخدمة في تكسير الجدران والأغشية الخلوية مثل الطحن Grinding، المزج أو الخلط Blend، الضغط العالي High pressure كل هذه الطرائق تسمى التكسير الميكانيكي والتي تعطي قوة عالية لتكسير الجدران أو الأغشية الخلوية. حيث يتم تكسير الخلايا النباتية يتم باستخدام النتروجين السائل الذي يكون ذو درجة حرارة واطئة جداً 179 تحت الصفر مع الهاون Mortar والذي توضع فيه العينة والمدقة أو يد الهاون Pestle والذي يستخدم للسحق، الخلايا الحيوانية فإنها تمزج أو تفرم لزيادة المساحة السطحية أما الخلايا البكتيرية فلا تحتاج لمثل هذه العمليات لتكسير الخلايا بل تتم باستخدام الطرق الكيميائية (المنظفات Detergents) أو باستخدام الطرق الأنزيمية. تعمل المنظفات على إذابة اللبيدات الموجودة في الأغشية الخلوية بالإضافة إلى التأثير تثبيطي لأنزيمات DNases التي تعمل على تحليل الـ DNA ويمكن أن تمسخ البروتينات وبذلك تساعد في ازالة البروتينات من المحلول. الأغشية الخلوية تحطم أو تحلل باستخدام محلول الاستخلاص والذي يحتوي على EDTA و SDS في أغلب الأحيان. الـ EDTA يعمل على ازالة أيون Mg والتي تمثل الدعامة الأساسية في حفظ التركيب الكلى للغشاء الخلوي. أما SDS فانه يساعد في تحطيم الأغشية الخلوية بإزالة اللبيدات من تلك الأغشية.

2. تنقية الدنا من المستخلص الخلوي: بالإضافة إلى الدنا يحتوي محلول المستخلص الخلوي على البروتينات و الحامض النووي الرنا RNA يجب التخلص من هذه الملوثات للحصول على الدنا بشكل نقى:

A: إزالة البروتينات: يتم فصل الدنا عن المكونات الخلوية الأخرى باستخدام العديد من عمليات إزالة البروتينات والتي تسمى Deproteinization Process من خلال استخدام معاملات بروتينية وأنزيمية يتم ازالة البروتينات من المحلول بالاعتماد على الصفات والخواص الفيزيائية للبروتينات والأحماض النووية والتي تمثل الاختلاف في عملية الذوبان، وهناك طريقتين لإزالة البروتينات من المحلول هي:

Deproteinization using organic solvents: ازالة البروتينات باستخدام المذيبات العضوية

معظم الطرق المستخدمة لإزالة البروتينات تعتمد على الاختلاف في ذوبانية الأحماض النووية والبروتينات والمذيبات العضوية. الأحماض النووية جزيئات محبة للماء hydrophilic molecules وتذوب بسهولة ضمن المحلول (الطبقة المائية، أما البروتينات فنها تحتوي على بقايا (جذور) كارهة للماء تجعلها تذوب في المذيب العضوي. أشهر المذيبات العضوية المستخدمة في ازالة البروتينات في الفينول Phenol والكلوروفورم المضاف إليه كمية قليلة من alcohol.

الفينول مادة بلورية في درجة حرارة الغرفة، يتحول إلى سائل عند اذابته في محلول Tris-HCL الفينول هيدروجيني 8. إن البروتينات تحتوي على بقايا (جنور) حرة كارهة للماء متمركزة في وسط الجزيئة، وجزيئات الفينول من ناحية أخرى كارهة جداً للماء عليه عندما يتم مزج محول المستخلص الخلوي مع حجم ممثل من محلول الفينول فان بعض جزيئات الفينول تميل إلى الذوبان في لب (وسط) جزئية البروتين بدلاً من ذوبانها في الماء وبالتالي تنتشر جزيئة الفينول في وسط جزيئة البروتين وأخيراً تجعلها تنتفخ ثم تنفجر أو تمسخ Denture. جزيئات البروتين الممسوخة تذاب ضمن طبقة الفينول أما جزيئات الأحماض النووية والتي لا تملك الجزيئات الكارهة للماء فإنها تبقى ضمن الطبقة المالية العلوية ضمن هذه المرحلة لا يستطيع الفينول إزالة كل البروتينات من المحلول وعليه تكرار عملية الاستخلاص بالفينول مرة ثانية لإزالة كل البروتينات الموجودة ضمن المحلول. مع كل مرحلة استخلاص يتم فقدان حوالي 25% من جزيئات الدنا وبما أن الفينول مادة سامة Toxic وعملية تحضيرها أمر مزعج وذو رائحة كريهة لذلك يفضل استخدام الطرق الأنزيمية في إزالة البروتينات.

أما الكلوروفورم فإنه لا يذوب في الماء ولا يفقد جزئيات الدنا حتى عندما تعاد عملية الاستخلاص به عدة مرات، فعالية الكلوروفورم في إزالة البروتينات The deproteinization action of chloroform مبنية على قدرة الكلوروفورم على مسخ البروتينات وجعلها تدخل ضمن الطبقة الوسطى المتكونة بينه وبين الماء -chloroform الكلوروفورم على مما يؤدي إلى ترسيبها، بما

أن فعالية الكلوروفورم في إزالة البروتينات تحصل ضمن الطبقة الوسطى المتكونة بينه وبين الماء لذلك فان فعالية الكلوروفورم تزداد لزيادة المساحة السطحية، ولإنجاز ذلك يتكون أولاً شكل مستحلب من الكلوروفورم والماء، ونظراً لأن الكلوروفورم لا يستطيع الاختلاط أو الامتزاج مع الماء بالشكل الاعتيادي لذلك يتم التحريك بالاهتزاز القوي الكلوروفورم لا يستطيع الاختلاط أو الامتزاج مع الماء بالشكل الاعتيادي لذلك يتم التحريك بالاهتزاز القوي تكوين المستحلب وزيادة المساحة السطحية للماء والكلوروفورم.

Deproteinization using Enzymes: إزالة البروتينات باستخدام الأنزيمات

يمكن أن تزال البروتينات من مزيج المستخلص الخلوي باستخدام الأنزيمات والتي من أكثرها استخداماً اله Proteinase K و Pronase كلا الأنزيمين ثابتين جداً وتُستخلص من الفطريات بشكل طبيعي ويمكن أن تحضر بشكل صناعي وتمتاز بكونها خالية من انزيمات DNase ولكن تكون غالية الثمن. تكون فعالة جداً بوجود تراكيز واطئة من المنظفات السالبة Anionic detergent وتراكيز عالية من الأملاح والـ EDTA ومدى واسع من الأس الهيدروجيني (PH 6.0–10.0) ودرجة الحراة المثلى لها (67°C)، لذلك تستطيع أن تحطم البروتينات بدون أن تحتاج إلى عوامل مساعدة.

المشكلة في استخدام هذه الأنزيمات انها تستطيع أن تزيل 80 إلى 90 % من البروتينات الموجودة وهذا يعود إلى The " عملياً معدل ازالة البروتينات الموجودة وهذا يعود إلى أن تحطيم البروتينات يعتمد على تركيز الأنزيم والمادة الأساس (Substrate) للأنزيم.

بسبب انه ليس عملياً أن تضاف كمية كبيرة من الأنزيم لتسريع التفاعل عند تركيز منخفض من المادة الأساس، وكأي تفاعل كيميائي فان تركيز المادة الأساس يقل كلما تقدم وقت التفاعل، لمعالجة هذا التباطؤ ولإكمال الأنزيم عمله إلى نهاية الوقت المحدد يتم استخدام تركيز عالي من الأنزيم والمادة الأساس حيث أن الأنزيم يستطيع ازالة 80 إلى 90% ومن البروتينات ضمن الوقت المعقول. هذه المشكلة يمكن أن تعالج باستخدام أحد المذيبات العضوية في الاستخلاص ولمرة واحدة فقط.

B. إزالة الحامض النووي الد : (Removal of RNA) الموجود ولذلك نلاحظ بقاء كمية استخلاص الدنا الموجود ولذلك نلاحظ بقاء كمية قليلة منه مع الحامض النووي الدنا. وإن من أفضل وأرخص الأنزيمات المستخدمة لهذا الغرض هي Ribonuclease A and النووي الدنا. وإن من أفضل وأرخص الأنزيمات المستخدمة لهذا الغرض هي Ribonuclease T والمنابق تستطيع أن تحطم جزيئة الرنا وخاصة عند القاعدة السايتوسين أو اليوراسيل. بعد استخدام المذيبات العضوية أو الأنزيمات في تحطيم البروتينات وازالة الحامض النووي الرنا يتم ترسيب البروتينات الممسوخة باستخدام الترسيب الميكانيكي (الطرد المركزي (Centrifugation) والذي يتم إجراءه بعد التحضين في الحمام المسائي المستخدام الترسيب الميكانيكي (الطرد المركزي إضافة محلول هيدروكسيد الصوديوم ذو التركيز العالي Water Bath مباشرة أو أحياناً يسبق عملية الطرد المركزي إضافة محلول هيدروكسيد الصوديوم ذو التركيز العالي (الأثقل) أما الذا فييقي ضمن الطبقة المائية بشكل ذائب ويحتاج إلى عملية ترسيب.

3. ترسيب الحامض النووي الدنا:(Precipitation of the DNA)

يتم ترسيب الدنا الموجود ضمن الطبقة المائية باستخدام نوعين رئيسين من الكحول وهما الايثانول Aqueous يتم ترسيب الدنا في المحلول المائي Polar تحيط بجزيئات الدنا في المحلول المائي Isopropanol. عملية ذوبان الدنا في الماء تحصل عن طريق تفاعل قوي بين الشحنة السالبة لمجموعة الفوسفات لجزيئة الدنا مع الشحنة الموجية لجزيئة الماء مما يؤدي إلى ذوبان الدنا في الماء. ترسيب الدنا بالكحول يعتمد على أساس تقليل ذوبانية الدنا في الماء، حيث يتم إضافة الكحول إلى المحلول المائي والذي يعمل على تجميع خيوط الدنا ضمن المحلول المائي بسحب جزيئات الماء منها. بعدها يتم تجميع الدنا باستخدام عملية الطرد المركزي لترسيب خيوط الدنا في أسفل أنبوبة الاختبار. عندها يتم اضافة محلول المائرسبة معه. بعد ذلك يترسب الدنا من المحلول بالطرد وتحريكه بهدوء، لغرض غسل الدنا وازالة بقية الاملاح المترسبة معه. بعد ذلك يترسب الدنا من المحلول بالطرد المركزي. يتم اذابة الدنا المترسب بإضافة محلول الإذابة TE أو الماء المقطر حسب كمية الدنا المترسب.

الجدول أدناه يوضح وظيفة المواد والمحاليل المستخدمة في عزل الـ DNA:

الوظيفة	المادة أو المحلول	ت
يعمل على تحليل جدار الخلية من خلال قيامه بسحب أيونات المغنسيوم الموجبة Mg++ التي تحافظ على استقرارية جدران وأغشية الخلايا.	EDTA	.1
يحافظ على استقرارية pH المحلول.	Tris – HCl	.2
منظف موجب الشحنة يذيب الأغشية الخلوية ويكون معقد مع الدنا مما يسهل ترسيبه بوجود محلول ملحي واطئ التركيز أو بإضافة محلول الايزوبروبانول، كما يعمل على إزالة السكريات المتعددة ويبقى الدنا في المحلول.	СТАВ	.3
يقوم بترسيب الدنا عن طريق سحب جزيئات الماء المرتبطة مع الدنا، يضاف بحجم مماثل لحجم المحلول الذائب فيه الدنا.	Isopropanol	.4
صبغة لها قابلية التألق عند التعرض للأشعة الفوق بنفسجية ولها القابلية على الارتباط مع الحامض النووي المزدوج DNA.	Ethidium bromide	.5
أنزيم يقوم بتحليل جزيئات الحامض النووي الرنا RNA.	RNase	.6
أنزيم يقوم بتحليل جزيئات الحامض النووي الدنا DNA.	DNase	.7
يقوم بغسل جزيئات الدنا من خلال إزالة بقايا الأملاح المستخدمة في الاستخلاص.	Ethanol 70 %	.8
يقوم بسحب جزيئات الدنا المرتبطة مع جزيئة الدنا مما يؤدي ذلك إلى تحويل الدنا من الشكل الذائب إلى الشكل الغير ذائب وبالتالي ترسيبه.	Ethanol 100%	.9
منظف أيوني سالب الشحنة Anion Detergent يقوم بمسخ بروتينات الغشاء الخلوي ويعمل على فصل البروتينات المرتبطة مع جزيئة الدنا وتحليلها.	SDS	.10
أحد الأملاح التي تستخدم في ترسيب الدنا لأن هذا الملح سريع الذوبان في الإيثانول 70% مما يؤدي إلى إزالته بسهولة من الدنا خلال الغسل مع الايثانول 70%.	Sodium acetate	.11
يتأين إلى Na^+ و CI^- ، أيون الصوديوم الموجب الشحنة يرتبط مع الدنا السالب الشحنة هذا يسمح لجزيئة الدنا لتترسب في الكحول. بدون استخدام هذا الملح يبقى الدنا سالب الشحنة وسوف يبقى في الطبقة المائية للمحلول.	NaCl	.12
مذيب عضوي له صفة القطبية (صفة القطبية للمذيب: هو المذيب الذي يعمل على توزيع المحتويات الخلوية بين طورين عضوي ومائي)، عند إجراء عملية الطرد المركزي تتوزع الدهون والبروتينات وبقية المحتويات الخلوية في طور بيني أما الأحماض النووية فإنها تتواجد ضمن الطبقة المائية لقابليتها لذوبان فدي الماء.	Chloroform	.13
مذيب عضوي يقوم بمسخ البروتينات، جزيئة البروتين تحتوي على بقايا كارهة للماء التي تتمركز في مركز الجزيئة، عندما يمزج المحلول الحاوي على البروتينات الذائبة مع الفينول، جزيئات الفينول تتتشر في مركز جزيئة البروتين مما يؤدي الى انتفاخها وأخيراً مسخها.	Phenol	.14

.15	Isoamyl Alcohol	يمنع تكوين الرغوة عند استخدام الكلوروفورم ويساعد على زيادة المساحة السطحية للكلوروفورم لإزالة البروتينات.
.16	Proteinase K	أنزيم يعمل على تحطيم بروتينات الغشاء الخلوي يستخدم بكثرة مع الخلايا الحيوانية والبكتريا السالبة الشحنة.
.17	Sodium Perchlorate	تزيل هذه المادة البروتينات الخلوية الناتجة من تحلل الأغشية الخلوية خلال الاستخلاص. تستخدم بتركيز عالي وتعمل على إزالة الـ SDS والبروتينات الذائبة وتمنع البروتينات للترسب مع الدنا خلال عملية ترسيبه بالإيثانول.
.18	TE	لإذابة الـ DNA، لتثبيط بقايا أنزيم الـ DNase إن وجدت.
.19	Liquid Nitrogen	يعمل على تحطيم جدران الخلايا النباتية لأنه ذو درجة حرارة 176 تحت الصفر.
.20	$MgCl_2$	يحافظ على الأحماض النووية من تأثير الأنزيمات الحالة مثل أنزيم اللايسوزايم.
.21	Triton – X 100	أحد أنواع المنظفات المتعادلة Neutral detergent التي تقوم بإذابة البروتينات بدون مسخها.
.22	β- Mercaptoethanol	عامل اختزال قوي جداً يقوم بتكسير جسور السستين Cysteine residues للبروتينات مما يؤدي الى تغيير تركيبها.
.23	PVP	أحد مكونات محلول الاستخلاص المستخدم لاستخلاص الدنا من النباتات الغنية بالمركبات الغينولية حيث يساعد امتزاز هذه المركبات الفينولية.
.24	Lysozyme	أنزيم يستخدم مع الـ EDTA حيث يقوم بتكسير الجدار الخلوي أو بتحليل الغشاء الخلوي البكتريا.
.25	Sarkosyl	منظف أيوني سالب الشحنة يستخدم بدلاً من الـ SDS نتيجة لذوبانيته العالية في المحاليل ذات التركيز العالي، أما الـ SDSفلا يذوب في المحاليل ذات التركيز العالي.
.26	Ammonium acetate	أحد الأملاح التي تستخدم في ترسيب الدنا ويفضل في الاستخدام لأنه عالي الذوبان في الإيثانول ومن السهل ازالته من الدنا نتيجة لتحلله إلى أيونات Ammonium و Acetate. استخدام Ammonium acetate فضل على استخدام Sodium acetate لأنه يعمل على إزالة النيوكليوتيدات ثلاثية الفوسفات أو الأحماض النووية المزدوجة الصغيرة (الأقل من 60) بالإضافة إلى قدرة خلات الأمونيوم على إزالة المنظفات وبعض الملوثات والتي تثبط الأنزيمات المستخدمة في تجارب إعادة ارتباط الدنا.